
Ideas on Improving Software Artifact Reuse via Traceability and Self-Awareness

Christof Tinnes∗, Andreas Biesdorf†, Uwe Hohenstein† and Florian Matthes∗
∗ Technische Universität München, Boltzmannstr. 3, 85748 Garching, Germany

{christof.tinnes,matthes}@tum.de
†Siemens AG - Corporate Technology, Otto-Hahn-Ring 6, München 81739, Germany

{andreas.biesdorf,uwe.hohenstein}@siemens.com

Abstract—We describe our vision towards automatic software
and system development and argue that reusing knowledge
from existing projects as well as traceability between corre-
sponding artifacts are important steps towards this vision. We
furthermore list barriers that are currently experienced with
software artifact reuse and traceability in industry, and suggest
some ideas to overcome these barriers.

1. Introduction
Imagine a sociotechnical system which produces software
out of high-level goals or strategies. Without adding further
constraints, we could easily think of such a system. If, for
example, the system includes humans and human actions,
the system could be a software company. If we add the
constraint that the system should not involve any human
activities to achieve its goals, such a system does not exist
given that the high-level goals are non-trivial. Still, systems
that can produce software systems out of high-level goals are
either involving high amount of human work or the software
systems produced are very limited in their capabilities or
their variability (e.g., software product lines). ISO/IEC/IEEE
12207:2017 [15] describes processes in the software devel-
opment life cycle. Most of the processes described in this
standard, such as the requirements analysis process, the
architectural design process or the implementation process,
still include a lot of manual and human efforts.

We believe that the current state of technologies allows
for a higher level automation in the software development
life cycle. Moreover, reuse of software artifacts (not only
source code but also design artifacts, operational artifacts
and all other data and information that is created during the
software development life cycle) combined with traceability
between artifacts, may provide the basis for replacing human
activities by automated activities.

In this paper, we discuss current barriers to an efficient
application of automated or semi-automated reuse in the
development of large-scale software-intensive systems in
an industrial setting. Furthermore, we list some ideas to
overcome these barriers. We propose a high-level conceptual
reference model for a reuse recommender system and argue
that the viewpoint of Self-Aware Computing Systems [16]
is beneficial to study, discuss and build such recommender
systems.

2. The Need for Reuse and Traceability
When making a decision, humans usually rely on existing
experience they have gained in the past. Humans abstract
the decision making task at hand and compare it to “similar
tasks” from the past. The decisions made and their outcomes
are then used to make a decision in the current decision
making task [3, 21]. When moving towards the long-term
vision of fully automated software system development, we
think that it is necessary to find similar tasks and decisions
of existing projects and subsequently evaluate their outcome.
The software artifacts themselves or meta-information from
existing projects as well as from the current project must
be available. In summary, we are looking for a computing
system that is

• capturing knowledge (e.g., requirements, design deci-
sions, source code, context information) about itself
and its environment,

• learning models about itself (e.g., to determine what
a “similar task” means), and

• reasoning (make informed decisions using previous
outcomes) to act (execute the decisions) based on
these models.

Computing systems with these capabilities have recently been
defined as Self-Aware Computing Systems [16]. We will focus
here on how to determine “similar tasks” or requirements.
The ”acting” part would then include adjustments and reuse
of previous artifacts, as for example, existing source code. In
many cases, it might not be possible to completely automate
this acting part but to provide recommendations instead,
which support reuse. To reuse artifacts based on similar
requirements, we need traceability between the requirements
and other artifacts [5, 20]. To summarize, we argue that
reuse of software artifacts and traceability between artifacts
is an important step towards a computing system that is able
to take high-level goals into account and towards moving
from human activities in software development to computing
activities.

3. Barriers to Reuse and Traceability
Our first goal is to build a system that is able to make
automated recommendations for software artifact reuse based
on existing knowledge gained from other projects. Especially,



we are interested in reusing code, design decisions or third-
party libraries based on given requirements or user stories.
We are aware that there have already been several attempts to
combine reuse of high-level software development artifacts
and traceability [5, 14, 20, 22], but we do not know of any
automatic approach that is efficiently used in the development
of large-scale software-intensive systems in an industrial
setting.

We conducted a workshop with five system architects
and two user experience experts to determine barriers to
effective reuse in software development. As a result of this
workshop, we identified four high-level aspects that need to
be considered when designing an effective support system
for software artifact reuse:

• Human aspects - According to one of the system
architects, architects and developers tend to reject
existing solutions (“There is already a solution to the
problem, but I do not like it!”). Instead of using or
adjusting an existing solution, software systems are
often re-invented from scratch. This observation is
quite common in software engineering and referred
to as Not-Invented-Here syndrome [1].

• User experience aspects - User experience experts
emphasized that users will more easily adopt a
solution, if “it is fun”.

• Technical aspects - Reuse of complex software
artifacts requires finding and understanding existing
artifacts. In typical industrial settings, the quality of
the artifacts and information available for artifacts
varies widely. Similarity detection and traceability
are therefore no easy tasks.

• Organizational aspects - Obviously, artifacts of
projects need to be available and accessible, which
is often not the case.

By “solution”, we mean software artifacts that serve a
given purpose. E.g., a design specification can be consistent
to some given requirements and therefore is a solution to the
requirements. Source code can implement this specification
and therefore is a solution to it.

In the following, we will focus on the technical aspects.
We believe that previous approaches suffer from the following
shortcomings:

1) There are very promising results in traceability re-
search. In [11] word embeddings and deep learning
are successfully applied to software traceability.
Current research concentrates on specific aspects of
reuse or traceability. However, to the best of our
knowledge, there has not yet been the attempt to
design and build an integrated system that combines
multiple approaches and is able to adjust and reuse
the models from one domain to another domain.

2) Even though there are excellent tools for traceability
available (e.g., TraceLab1), these tools are rarely
capable of being integrated into the existing day-to-
day activities and tools the users are familiar with.

1. https://github.com/CoEST/TraceLab

Most of the tools are provided for research purposes
and not for industrial application.

3) Most of the approaches did not have access to
very powerful NLP techniques that exist today. For
example, there are techniques available that capture
the semantics of words and documents and can be
trained fast and unsupervised on existing corpora
[4, 18, 19].

4) Continuous learning through user feedback and
continuous adaption of the used techniques have
to be in place. For example, the combination of
techniques that are used for a given task, e.g., doc-
ument similarity, need to be adapted continuously
based on the existing data and user feedback. This
allows to “finetune” pretrained models and adapt
them to the specific project needs.

In the following, we describe our planned approach to
overcome these four barriers.

4. Approach

4.1. Conceptual Reference Model
During the software development life-cycle, various artifacts
are produced and the dependencies among them can be
very complex. There are frameworks available, e.g., the
TOGAF Architecture Content Framework [10], which aim
at structuring the output in different life-cycle phases. As
an example of the complexity, artifacts are usually not in a
one-to-one relation but in a many-to-many relation, and the
relations are changing over time. For example, a line of code
is usually not only related to one user story, but might cover
multiple user stories (the line of code might contain an if-
statement, which distinguishes both stories). Some of the data
is structured, some is unstructured, and some of the data is
only partially structured. E.g., issues in an Issue Management
System (IMS) have a field owner so the linking of issues and
issue owner is directly accessible. On the other hand, the
description of an issue usually consists of natural language
and therefore is unstructured. Commit messages, for example,
sometimes follow a template including corresponding IMS
issue id and sometimes are completely unstructured. In order

Figure 1. A conceptual reference model for a software development artifact
recommender system.



to use the unstructured data for making recommendations,
a lot of preprocessing has to be in place. When some
information has been extracted, it needs to be linked and used
for reasoning. For instance, trace links between the artifacts
can be computed. Usually, some pipelines are proposed
to process given artifacts [17]. This makes sense for a
concrete task (e.g., generating trace links between test case
specification and source code), but given the complexity
described above, the management of pipelines for all single
tasks that occur in the overall picture will become too
complex. We argue that a blackboard architecture [2] is much
better suited, to handle the complexity. In this architecture,
the existing knowledge and new artifacts are stored in a
shared data repository. There are agents for specific tasks,
e.g., preprocessing of textual data or annotation of data
that process the data from this repository. The agents are
pluggable so that the systems’ capabilities can be extended by
adding more agents. The conceptual model for such a system
is depicted in Figure 1. The system typically needs agents
to preprocess natural language texts, compute similarities
of artifacts, annotate documents with topics or architectural
elements and compute trace links. Besides the agents that
(pre-)process and enrich the available knowledge, this model
includes a recommendation engine and a learning engine,
which are described in the next subsection.

4.2. Continuous Learning
In a first step, the system we envision makes recommenda-
tions to users. For example, if a user creates a new issue in
an IMS, the recommendation engine finds similar issues that
are already available (from other inner-source or open-source
projects). The user can then reuse (parts of) the solution for
these issues by utilizing trace links between the issues and
solution artifacts. User feedback can be utilized to adjust the
models that are used by the recommendation engine. The
recommendations are usually influenced by a large number
of different factors, such as parameters of the preprocessing,
filters, model parameters, ranking criteria and the models
themselves. One challenge therefore is to find the best values
for the influencing factors. Initial values for these factors can
be learned from existing labeled data. Usually, there will not
be sufficient learning data and furthermore, the values will
change over time and need to be adjusted to the given context.
Therefore, our conceptual model includes a learning engine.
This engine evaluates user feedback, which is extracted from
the projects (e.g., rating system integrated into an IMS). The
engine can use existing technologies, e.g., from learning to
rank (LTR) algorithms [24], to improve the recommendations
based on the user feedback.

4.3. Self-Aware Computing Systems
Comparing the conceptual model of Figure 1 and the
reference architecture for Self-Aware Computing Systems
given in the first chapter of [16], our conceptual model
follows the so called LRA-M (Learn-Reason-Act and Model)
reference architecture. We believe that the viewpoint of Self-
Aware Computing Systems can be fruitful in software and
systems traceability. A model-based learning and reasoning

feedback loop can be used to improve the factors and the
models that influence the recommendations as described in
Subsection 4.2. It therefore helps to overcome the complexity
of the problem.

4.4. Integration into the Tool Landscape
There are already many tools for requirements and software
traceability (e.g., TraceLab2, OpenTrace3). Even though these
are excellent tools, they are often made for research purposes
and can hardly be applied for software artifact reuse. In-
practise tools usually need to be explicitly integrated into
the existing tool landscape and development activities. Since
this leads to additional usage overhead and learning efforts
(depending on the existing tool landscape), acceptance of
such tools is often limited. On the other hand, applications
that are already used for requirements management (e.g.,
IBM DOORS4), often lack capabilities for semi-automated
trace link generation and usually cover only parts of the devel-
opment life-cycle. As can be seen from our conceptual model,
our approach is to feed the recommendations back ”into the
projects”. To this end, the software that is used in day-to-
day activities such as Integrated Development Environments,
Modelling Tools and IMS needs to be integrated with such a
tool for requirements and software traceability. We therefore
envision an open system. Integration with existing tools can
be done, for example, by means of providing plugins.

4.5. The Lexical Gap, Natural Language Semantics
and Artificial Intelligence

Artifacts produced during system and software development
differ along multiple dimensions. They vary from formal
language to natural language, structured to unstructured,
text to pictures, in file type, language, etc. This makes
especially the generation of trace links between artifacts a
very complex task. Recent developments in Natural Language
Processing (NLP) though seem to be quite promising to
overcome these challenges [23]. Word2Vec [18] for example,
allows to train vector representations on large corpora
with a low computational complexity and provides good
results, e.g., in capturing semantic similarity of words. These
techniques could even be used to overcome the lexical gap
between natural language text and source code as recent
studies demonstrate [23], and therefore allow to compute
trace links between the artifacts. Other research areas in
Artificial Intelligence (AI) also present promising results in
software engineering. For instance, Search-Based-Software-
Engineering [12] is successfully applied to the recovery of
trace links [8].

5. Relevance
The relevance of reusing artifacts that are created during the
software and systems development lifecycle has often been
stressed in the literature. Unlike for software components
or libraries, the reuse of knowledge and experiences from

2. https://github.com/CoEST/TraceLab
3. http://www.semanticsoftware.info/opentrace
4. https://www.ibm.com/de-de/marketplace/requirements-management



other projects as well as the consideration of high-level
artifacts is less mature, although its importance has been
emphasized many times. For example, in [13], the authors
come to the conclusion that software architects see the
importance of documenting architectural knowledge but are
rather reluctant in actively documenting their own knowledge.
Actively maintaining trace links is not part of the work
habits of software architects. A study on the effect of using
requirements catalogs on effectiveness and productivity of
requirements specification [7] concludes that catalog-based
reuse has a large effect on effectiveness. An industrial case
study by Goldin et al. [9] demonstrates the reduction of
time to market by reusing requirements. According to the
study by Falessi et al. [6] using NLP techniques can lead to
an effort reduction of up to 12% for classifying equivalent
requirements.

During the workshop mentioned in Section 3, the need
for an integrated end-to-end support for reuse of existing
software artifacts has been stressed. This furthermore encour-
ages us to foster the vision and pursue research in accordance
with our approach described previously.

6. Conclusion and Outlook

The idea behind Self-Adaptive or Self-Aware Computing
Systems is that of deferring binding time, i.e. moving
activities from planning time, design time or implementation
time to runtime. The purpose of software systems is to
support human activities by computing systems, i.e., also
moving activities to runtime. The planning, development and
operations of these software systems themselves includes
human activities, some of which have already been automated
(e.g., monitoring and restarting applications). We argue that
as a next step towards our vision it is necessary to reuse
existing knowledge and existing artifacts. In order to enable
computing systems to learn from the experiences of previous
projects and use existing knowledge for decisions, the system
needs to be able to understand and compare the context of
different projects. We believe, that cross-project reuse enabled
by traceability is a first step into that direction. Moreover, we
believe that the shortcomings of existing systems for reuse
and traceability can be overcome. Appropriate systems, fit
for industrial usage, can be created with the current state of
technology. In the future, this approach can be utilized to
support complex decision-making tasks, e.g., by applying
reinforcement learning techniques. Furthermore, using the
trace links, available temporal structures can be “lifted
between artifacts”. For instance, using links between source
code commits and issues in an IMS, the commit history can
be projected to the issues and therefore creating a history of
the tickets. This is the point, where the potential of the reuse
of high-level requirements becomes enormous. Not only
source code can be reused but one can also anticipate bugs,
changes or possible design flaws since they are available in
the history of other projects. We believe that this step can
be reached in a reasonable amount of time and that all the
ingredients needed for this step are already there. They just
need to be assembled in the right way.

References
[1] Dan Ariely. The Upside of Irrationality: The Unexpected Benefits of

Defying Logic. Harper Perennial, 1st edition, 2011.
[2] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,

and Michael Stal. Pattern-Oriented Software Architecture - Volume 1:
A System of Patterns. Wiley Publishing, 1996.

[3] P. Dayan and N. D. Daw. Decision theory, reinforcement learning, and
the brain. Cogn., Affect. Behavioral Neurosci., 8(4):429–453, 2008.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805, 2018.

[5] Randa Elamin and Rasha Osman. Towards Requirements Reuse
by Implementing Traceability in Agile Development. 41st Annual
Computer Software and Applications Conference, 2017.

[6] Davide Falessi and Giovanni Cantone. The Effort Savings of Using
NLP Techniques for Classifying Equivalent Requirements in Industry.
IEEE Software, In Print(c):1, 2018.

[7] J. L. Fernández-alemán, J. M. Carrillo-de gea, J. V. Meca, J. N. Ros,
A. Toval, and A. Idri. Effects of Using Requirements Catalogs on
Effectiveness and Productivity of Requirements Specification in a
Software Project Management Course. IEEE Trans. Edu., 59:105–118,
2016.

[8] A. Ghannem and M. S. Hamdi. Search-Based Requirements Trace-
ability Recovery. IEEE Congr. on Evol. Comp., 3:1183–1190, 2017.

[9] Leah Goldin, Michal Matalon-beck, and Judith Lapid-maoz. Reuse
of Requirements Reduces Time to Market. IEEE Int. Conf. on Soft.
Sci., Techno. & Eng., pages 55–60, 2010.

[10] The Open Group. TOGAF Version 9.1, 2011.
[11] Jin Guo, Jinghui Cheng, and Jane Cleland-Huang. Semantically

Enhanced Software Traceability Using Deep Learning Techniques.
Proc. - ICSE 2017, pages 3–14, 2017.

[12] M. Harman. The role of artificial intelligence in information retrieval.
Proc. 1st Int. Workshop Realizing AI Synergies in Softw. Eng., 2012.

[13] Johan F. Hoorn, Rik Farenhorst, Patricia Lago, and Hans Van Vliet.
The lonesome architect. J. Syst. Softw., 84(9):1424–1435, 2011.

[14] B. Imam, A. Nordin, and N. Salleh. Software Requirements Patterns
and Meta model : A Strategy for Enhancing Requirements Reuse
(RR). Int. Conf. Inform. Commun. Technol. Muslim World, 2016.

[15] ISO, IEC, and IEEE. Systems and software engineering. Technical
report, ISO/IEC/IEEE 12207, 2017.

[16] S. Kounev, P. Lewis, K. L. Bellman, N. Bencomo, J. Camara,
A. Diaconescu, L. Esterle, K. Geihs, H. Giese, S. Gtz, P. Inverardi, J. O.
Kephart, and A. Zisman. Self-Aware Computing Systems. Springer,
2017.

[17] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and
D. McClosky. The stanford corenlp natural language processing
toolkit. In Proc. of 52nd Annu. Meeting of the Assoc. for Computa-
tional Linguistics: Sys. Demonstrations, pages 55–60. Association for
Computational Linguistics, 2014.

[18] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient Estimation
of Word Representations in Vector Space. NIPS proceedings, 2013.

[19] Jeffrey Pennington, Richard Socher, and Christopher D. Manning.
Glove: Global vectors for word representation. In Empirical Methods
in Natural Language Processing (EMNLP), pages 1532–1543, 2014.

[20] Rob Pooley and Craig Warren. Reuse through requirements traceability.
Proceedings - The 3rd International Conference on Software Engi-
neering Advances, ICSEA 2008, Includes ENTISY 2008: International
Workshop on Enterprise Information Systems, pages 65–70, 2008.

[21] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement
Learning. MIT Press, Cambridge, MA, USA, 1st edition, 1998.

[22] Tuyet-lan Tran and Joseph S. Sherif. Quality Function Deployment
(QFD): An Effective Technique For Requirements Acquisition and
Reuse. Proc. of Softw. Eng. Standards Symp., 1995.

[23] X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu. From word
embeddings to document similarities for improved information retrieval
in software engineering. Proc. 38th Int. Conf. Softw. Eng. - ICSE ’16,
pages 404–415, 2016.

[24] T. Zhao, Q. Cao, and Q. Sun. An Improved Approach to Traceability
Recovery Based on Word Embeddings. Proc. - Asia-Pacific Soft. Eng.
Con., 2017-Decem:81–89, 2018.


